








Methods to Solve Any Engineering Problem

Analytical Method Numerical Method Experimental Method

Classical approach
100% accurate results
Closed form solution

Applicable only for simple

problems like cantilever and
simply supported beams, etc.

Complete in itself

Though analytical methods
could also give approximate
results if the solution is not
closed form, in general
analytical methods are
considered as closed form
solutions i.e. 100% accurate.

Mathematical representation

Approximate, assumptions
made

Applicable even if a physical
prototype is not available
(initial design phase)

Real life complex problems

Results cannot be believed
blindly. Certain results must
be validated by experiments
and/or analytical method.
Finite Element Method: Linear,
nonlinear, buckling, thermal,
dynamic, and fatigue analysis
Boundary Element Method:
Acoustics, NVH
Finite Volume Method:
CFD (Computational Fluid
Dynamics) and Computational
Electromagnetics
Finite Difference Method:
Thermal
and Fluid flow analysis (in
combination with FVM)

Actual measurement

Time consuming and needs
expensive set up

Applicable only if physical
prototype is available
Results cannot be believed
blindly and a minimum of 3 to
5 prototypes must be tested

Strain gauge
Photo elasticity
Vibration measurements

Sensors for temperature and
pressure, etc.

Fatigue test

Finite Element Method (FEM):
FEM is the most popular numerical method.

The Finite Element Method (FEM) is a numerical technique used to determine the approximated solution for a partial differential
equations (PDE) on a defined domain (W). To solve the PDE, the primary challenge is to create a function base that can
approximate the solution. There are many ways of building the approximation base and how this is done is determined by the
formulation selected. The Finite Element Method has a very good performance to solve partial differential equations over
complex domains that can vary with time.

A geometric model becomes a mathematical model,
when its behaviour is described, or approximated by
selected differential equations and boundary
conditions.




Boundary Element Method (BEM):

This is a very powerful and efficient technique to solve acoustics or NVH problems. Just like the finite element method, it also
requires nodes and elements, but as the name suggests it only considers the outer boundary of the domain. So, when the
problem is of a volume, only the outer surfaces are considered. If the domain is of an area, then only the outer periphery is
considered. This way it reduces the dimensionality of the problem by a degree of one and thus solving the problem faster.

The Boundary Element Method (BEM) is a numerical method of solving linear PDE which have been formulated as integral
equations. The integral equation may be regarded as an exact solution of the governing partial differential equation. The BEM
attempts to use the given boundary conditions to fit boundary values into the integral equation, rather than values throughout
the space defined by a partial differential equation. Once this is done, in the post-processing stage, the integral equation can
then be used again to calculate numerically the solution directly at any desired point in the interior of the solution domain. The

boundary element method is often more efficient than other methods, including finite elements, in terms of computational

resources for problems where there is a small surface/volume ratio. Conceptually, it works by constructing a “mesh” over the
modeled surface. However, for many problems boundary element methods are significantly less efficient than volume-
discretization methods like FDM, FVM or FEM.

Finite Volume Method (FVM):

The Finite Volume Method (FVM) is a method for representing and evaluating partial differential equations as algebraic
equations [LeVeque, 2002; Toro, 1999). It is very similar to FDM, where the values are calculated at discrete volumes on a
generic geometry. In the FVM, volume integrals in a partial differential equation that contain a divergence term are converted to
surface integrals, using the divergence theorem. These terms are then evaluated as fluxes at the surfaces of each finite volume.
Because the flux entering a given volume Is identical to that leaving the adjacent volume, these methods are conservative.
Another advantage of the finite volume method is that it is easily formulated to allow for unstructured meshes. The method is
used in many computational fluid dynamics packages.

Finite Difference Method (FDM):

Finite Element and Finite Difference Methods share many common things. In general, the Finite Difference Method is described
as a way to solve differential equation. It uses Taylor's series to convert a differential equation to an algebraic equation. In the
conversion process, higher order terms are neglected. It is used in combination with BEM or FVM to solve thermal and CFD
coupled problems.




0 FDM makes pointwise approximation to the governing
equations i.e. it ensures continuity only at the node points.
Continuity along the sides of grid lines are not ensured.

FEM make piecewise approximation i.e. it ensures the continuity
at node points as well as along the sides of the element.

FDM do not give the values at any point except at node points. It
do not give any approximating function to evaluate the basic
values (deflections, in case of solid mechanics) using the nodal

values.




Question: Is it possible to use all of the methods listed above (FEA, BEA, FVM, FDM) to solve the same problem (for example,
a cantilever problem)?

The answer is YES! But the difference is in the accuracy achieved, programming ease, and the time required to obtain the
solution.

When internal details are required (such as stresses inside the 3D object) BEM will lead to poor results (as it only considers
the outer boundary), while FEM, FDM, or FVM are preferable. FVM has been used for solving stress problems but it is well

suited for computational fluid dynamics problems where conservation and equilibrium is quite natural. FDM has limitations with

complicated geometry, assembly of different material components, and the combination of various types of elements (1D, 2D
and 3D). For these types of problems FEM is far ahead of its competitors.




Discretization of Problem:

All real-life objects are continuous. This means there is no physical gap between any two consecutive particles. As per material
science, any object is made up of small particles, particles of molecules, molecules of atoms, and so on and they are bonded
together by the force of attraction. Solving a real-life problem with the continuous material approach is difficult. The basis of all
numerical methods is to simplify the problem by discretizing (discontinuation) it. In other words, nodes work like atoms and the
gap In between the nodes Is filled by an entity called an element. Calculations are made at the nodes and results are

interpolated for the elements.
From a mechanical engineering point of view, any component or system can be represented by three basic elements:

Mass 'm’
L]

Spring 'k’ %

There are two approaches to solve any problem Damper ‘¢ &'

All the numerical methods including the Finite Element Method follow the discrete approach. Meshing (nodes and elements) is
nothing but the discretization of a continuous system with infinite degrees of freedom to a finite degrees of freedom.

conﬁ nuous approach DlscretQ approach When Can We Say That We Know the Solution to The Above Problem?
If and only if we are able to define the deformed position of each and every particle completely.
All real-life components are ) . )
Equivalent mathematical modeling
continous

Discrete

(mathematical \
equivalent) model, chair £
represented by -
shell and beam

elements, person

via lumped

mass at C.G.

The minimum number of (motion, etc.) req to define the position and

state of any entity completely in space is known as degrees of freedom (dof)




In classical methods exact solutions are obtained where as in
finite element analysis approximate solutions are obtained.

Whenever the following complexities are faced, classical method
makes the drastic assumptions’ and looks for the solutions:
B Shape, Boundary conditions and Loading

When material property is not isotropic, solutions for the

problems become very difficult in classical method but in FEM
solutions for the problems without any difficulty.

If structure consists of more than one material, it is difficult to
use classical method, but finite element can be used without any
difficulty.

Problems with material and geometric non-linearities can not be
handled by classical methods. There is no difficulty in FEM.




The total DOFs for a given mesh model is equal to the number of nodes multiplied by the number of dof per node.

All of the elements do not always have 6 dofs per node. The number of dofs depends on the type of element (1D, 2D, 3D), the

family of element (thin shell, plane stress, plane strain, membrane, etc.), and the type of analysis. For example, for a structural

analysis, a thin shell element has 6 dof/node (displacement unknown, 3 translations and 3 rotations) while the same element

when used for thermal analysis has single dof /node (temperature unknown).

For a new user, it is a bit confusing but there is a lot of logical, engineering, and mathematical thinking behind assigning the

specific number of dofs to different element types and families.

No. of nodes = 8
DOF per node =6
Total equations = 48

No. of points = o<
DOF per point =6

Total equations = oo




Why Do We Carry Out Meshing? What Is FEM / FEA?

FEM
- A numerical method
- Mathematical representation of an actual problem

- Approximate method

The Finite Element Method only makes calculations at a limited (Finite) number of points and then interpolates the results for
the entire domain (surface or volume).

Finite — Any continuous object has infinite degrees of freedom and it is not possible to solve the problem in this format. The
Finite Element Method reduces the degrees of freedom from infinite to finite with the help of discretization or meshing (nodes
and elements).

Element — All of the calculations are made at a limited humber of points known as nodes. The entity joining nodes and forming

a specific shape such as quadrilateral or triangular is known as an Element. To get the value of a variable (say displacement)
anywhere in between the calculation points, an interpolation function (as per the shape of the element) is used.

Method - There are 3 methods to solve any engineering problem. Finite element analysis belongs to the numerical method
category.




How the Results are Interpolated from a Few Calculation Points

It is ok that FEA is making all the calculations at a limited number of points, but the question is how it calculates values of the
unknown somewhere in between the calculation points.

This is achieved by interpolation. Consider a 4 noded quadrilateral element as shown in the figure below. A “quad4” element
uses the following linear interpolation formula:

U=ag+aix+azy+azxy

FEA calculates the values at the outer nodes 1, 2, 3, 4 i.e. ao, a1, az, a3 are known.

3 4

4 noded (linear) quad

The value of the variable anywhere in between could be easily determined just by specifying x and y coordinates in above
equation.

For an 8 noded quadrilateral, the following parabolic interpolation function is used:

U=aotarx+azy+asxy+asxz+asy2+asx2y+arxy2

8 noded (parabolic) quad




¢(x)= ay= constant

|«—— Subregion or —|

element

- X

(a) Approximation by a constant

o(x)
\

j«— Subregion or —|
element

(b) Linear approximation

Exact solution

B o(x)=ag+ax+ax?

- X

}=— Subregion or —={
element

(c) Quadratic approximation



How is the Accuracy if we Increase the Number of Calculation Points (Nodes and Elements)?

In general, increasing the number of calculation points improves the accuracy.

Suppose somebody gives you 3 straight lines and asks you to best fit it in a circle, then find the area of the triangle and compare
it with the circle area. This is then repeated with 4, 6, 8, 16, 32 and 64 lines.

000

3 Lines 4 Lines

OO

6 Lines 8 Lines Shaded Area is Error

By increasing the number of lines, the error margin reduces. The number of straight lines is equivalent to the number of elements
in Finite Element Analysis.

Exact Answer 100
90

6 8

No. of Lines

The exact answer for the area of the circle (1 r2) is 100. 3 lines gives the answer of 41, while 4 lines gives 64, and so on. An
answer of 41 or 64 is not at all acceptable, but 80 or 90 is, considering the time spent and the relative design concept.




What is Stiffness and Why Do We Need it in FEA?
Stiffness 'K’ is defined as Force/length (units N/mm). Physical interpretation — Stiffness is equal to the force required to produce
a unit displacement. The stiffness depends on the geometry as well as the material properties.

Cast Iron Mild Steel Aluminium

Consider 3 rods of exactly the same geometrical dimensions — Cast Iron, Mild Steel, and Aluminium. If we measure the force
required to produce a 1 mm displacement then the Cast Iron would require the maximum force, followed by Steel and Aluminium
respectively, indicating Kci > Kus > Ka

Mild Steel Mild Steel Mild Steel

Now consider 3 different cross-sectional rods of the same material. Again, the force required to produce a unit deformation will
be different. Therefore, stiffness depends on the geometry as well as the material.




Importance of the stiffness matrix - For structural analysis, stiffness is a very important property. The equation for linear static
analysis is [F] = [K] [D]. The force is usually known, the displacement is unknown, and the stiffness is a characteristic property
of the element. This means if we formulate the stiffness matrix for a given shape, like line, quadrilateral, or tetrahedron, then
the analysis of any geometry could be performed by meshing it and then solving the equation F = K D. Methods for formulating
the stiffness matrix —

, Direct Method
2. Variational Method
3. Weighted Residual Method

The direct method is easy to understand but difficult to formulate using computer programming. While the Variational and
Weighted Residual Methods are difficult to understand, but easy from a programming point of view. That's the reason why all
software codes either use the Variational or Weighted Residual Method formulation.







Physical
phenomenon

* Solid Mechanics

e.g. Axially loaded elastic bar

* Fluid Mechanics

e.g. Poiseuille flow in pipe

* Thermal Conduction

T S

e.g. 1-D heat flow

* Diffusion
e.g. 1-D diffusion

* Electrical Conduction

e.g. 1-D electric current flow

Governing
equations &

—
Approximation

(Boundary
Conditions)

Finite element
equations

a

System of equations:

e e [Kfu}={r)

Stiffness Nodal Force
matrix  vector vector

Figure 1: Governing equations for various physical phenomena







Axially loaded elastic bar STRAIN ENERGY

——

A(Xx) =cosssection at X

b(x) =body force distribution
(force per unit length)
———1-—-* X E(X) =Young’s modulus

u(x) =disgplacement of the bar a
x=t %

Differential equation govermning the response of the bar

d du : - i - -
M T e A R O; e x2E Strain energy is a type of potential energy that is stored in a structural member as a result

dx dx of elastic deformation. The external work done on such a member when it is deformed

from its unstressed state is transformed into (and considered equal to the strain energy
stored in it.

* The strain energy stored in the entire bar:

g T 1%.. 5 ou\
U=[U'dV =[U'ddx= —|E& Adx|s— dx
0 29

ox

« Strain energy, U, for a uni-axial bar in extension —I




Variational Approach

In solving problems arising in physics and engineering it is
often possible to replace the problem of integrating a
differential equation by the equivalent problem of seeking
a function that gives a minimum value of some integral.
Problems of this type are called variational problems.

The methods that allow us to reduce the problem of
integrating a differential equation to the equivalent
variational problem are usually called varfationa/
methods.




Variational Approach

What is a functional?

b
functional ...----'""‘""’ I(y) — j F(xa y’ y')dx

subjected to the boundary conditions
yla)=A4, yb)=8B

Goal: Find a function F(x,y,y’) for which the functional
I(y) has an extremum (usually a minimum)







Variational Approac

Question: Are there situations in which the function
F(x,y,y’) for which the functional I(y) in minimized is
ALSO a solution to the PDE and BCs??

Answer: Yes, all PDEs typically found in physics and
engineering have functionals or variational equations
whose solution is equivalent to solving the PDE
directly.




1.5 CALCULUS OF VARIATIONS

I is a method of finding maximum and minimumor stationary values of functional. A functional
defined as function of several other functions. For example: Potential energy plays the role

can be
'~ of the functional,
Consider a functional expressed as

J“' (g ")l === (1.26)

and 1" are Iumtmn\ nl v lhculmc A and Fare lhe func

Let this integral is defined in the region |x, ,\1] as shown
u




As we can see from this image, a stationary point is a point on a curve where the
slop is zero

Hence the stationary points are when the derivative is zero

d
Hence to find the stationary point of y = f(z), find d—y and then set it equal to zero
T

d

% g
dx

Then solve this equation, to find the values of « for what the function is stationary

For examples

y=2a>+3c+8

d
To find the stationary find d—y
@

global maximum
d:
local maximum d_Z =2z +3

~
\

Set it to zero
2¢+3=0

e Solve
local minimum

global minimum

! ] ] ]
0.2 0.4 06 038




8TOTAL POTENTIAL ENERGY (11)

The total potential energy of an elastic body is defined as the sum ef“? he str
nternal stresses produced and the work potential due to the extemal force.

nsﬂ

~. Total potential energy(PE) = Strain Energy E) + Work '
ie. PE functional, [T = SE +WP _; ’

ey v

8.1 Potential Energy Functional Fora T ree [
Consider a three-dimensional elastic body
nd a point loads. Let u, v, and w be the displace: |
rom Eq.(1.35), we have, ="
Potential Energy Functional = SE + WP
ie. I = SE+WP
he strain energy of the body is given by a |
atel‘lals) ¥ :..:_
The total potential energy of an elastic body |,
(U) and the work potential (WP) .

is defined as the sum of total strain energy




GRANGE’S EQUATION

1.6 EULER-LA
F(x, 4, w'u")dx be the functional

Let
and second derivatives with respect to the variable x, i’
in which ‘A" is defined.

where variable # and its first
is the variation is functional must|

functions of x. and [x, x,] is the region
The condition for the functional A to be minimum

zero.

x| OF

ie. 5A =0
Thus. from maximizationor minimization of simple function in calculus

oF oF LU B
— —du +—0u" |dx=
o Su+ W 8:4 + p¥ i )dx 0

[ oF
+
Ju' »

Since du is arbitrary, each term must vanish individually so that

) o (aF) d? (BF) B
st 22 pee | A v +_—.’ L= =0 . e -
ou dx\ou ) dx*\ou" P

sebanod -a:np&

The Eq.(1.29) is know as the Euler equation or the Euler Lagrange’s eq

In the calculus of variations an i i i i
d classical mechanics, the Euler-Lagrange equaﬂonsm is a system of second-order ordinary differential equations whose solutions are stationary points of the

iven action f i i i i i
g n functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange




1.8.2 Principle of Minimum Potential Energy

It states that “Of all the displacement confi, urgtio;x alb
compatibility conditions and boundary co
equilibrium condition is one which will have

us, from Eq.(1.35),
Potential Energy functional, [T =SE+
For PE functional to be minimum,
8(m) = S(SE)
For example: Consider two bodies X and
heights /1 and h, as shown in figure (1.9), satis
. Out of these two bodies, the body whic
attain the equilibrium state earlier than the k

which has the minimum potential energy sati
tate will have minimum potential energy.

The minimum total potential energy principle is a fundamental concept used in physics and engineering. It dictates that at low temperatures a structure or body shall deform or displace to a
position that (locally) minimizes the total potential energy, with the lost potential energy being converted into kinetic energy (specifically heat).













Example 4

By R-R method, for a bar of cross sectional area A elasti¢ mad":

i Solution:

SORNRNN

Fig. 1.12 : Axial loaded bar elen



e ElemenitrveTy

— Modeling and Finit = :
o4 —M any point x from the fixed end. When the bar sy

displacement at load point L.

AE

Jacement at

the axial disp ;
{.and letu, be the

Let u be :
at pmnl

ial loading P

uniaxi o : |
i) Formulate the PE functiona T - ”l‘L : PalL
PE functional is given by [1=SE+ WP ‘—
given by
where Strain energy stored in bar is given DY ‘ (—jl_l e Lu‘_ s
! » | da
SE = ll‘j Jlj dx and ‘ |
St G :
= e e a, =
Work potential is, wpP = —Pu, V %
AE (L ( du ] v) Determination of displacement, strain and stress
- D
R TJ“ k«'),\] dx — Pu, To find Displacement

Thus, substituting value of @, into Eq.(3), we get
52)
upr="|= s
AE

To find end deflection and Stress

ii) Assume a polynomial displacement function
u= H‘ Ste ll X

Where a, and a, are the gener ralized mmdnmlu {0 be determined and the displaceme

should \.m\l\ 1ollm\ ing boundary conditioni.e

= Qatx=0; =a

Hence the Proof.

-. From Eq.(2) w=ax

Differentiating Eq.(3) with respect to x, we get We know that, x = L at the end

Therefore, from Eq.(6), we have

=G

iii) Substitute the displacement function into PE fu
Substituting Eq.(3) and Eq.(4) into (1), we get

T e w=alL Thus Strain, e = ?ﬂ
I = E 3 ‘ : %
2 a() and from Hooke’s law, we have
o . AR c =€E
2 a L

V) Minimize PE functional

o ; |
The condition for the minimization is ‘
an P




Thank You




